Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
NPJ Vaccines ; 8(1): 84, 2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20241059

ABSTRACT

In response to the COVID-19 pandemic, different types of vaccines, such as inactive, live-attenuated, messenger RNA (mRNA), and protein subunit, have been developed against SARS-CoV-2. This has unintentionally created a unique scenario where heterologous prime-boost vaccination against a single virus has been administered to a large human population. Here, we aimed to analyze whether the immunization order of vaccine types influences the efficacy of heterologous prime-boost vaccination, especially mRNA and protein-based vaccines. We developed a new mRNA vaccine encoding the hemagglutinin (HA) glycoprotein of the influenza virus using the 3'-UTR and 5'-UTR of muscle cells (mRNA-HA) and tested its efficacy by heterologous immunization with an HA protein vaccine (protein-HA). The results demonstrated higher IgG2a levels and hemagglutination inhibition titers in the mRNA-HA priming/protein-HA boosting (R-P) regimen than those induced by reverse immunization (protein-HA priming/mRNA-HA boosting, P-R). After the viral challenge, the R-P group showed lower virus loads and less inflammation in the lungs than the P-R group did. Transcriptome analysis revealed that the heterologous prime-boost groups had differentially activated immune response pathways, according to the order of immunization. In summary, our results demonstrate that the sequence of vaccination is critical to direct desired immune responses. This study demonstrates the potential of a heterologous vaccination strategy using mRNA and protein vaccine platforms against viral infection.

2.
Vaccine ; 41(11): 1892-1901, 2023 03 10.
Article in English | MEDLINE | ID: covidwho-2237041

ABSTRACT

Owing to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, the development of effective and safe vaccines has become a priority. The measles virus (MeV) vaccine is an attractive vaccine platform as it has been administered to children for more than 40 years in over 100 countries. In this study, we developed a recombinant MeV expressing the full-length SARS-CoV-2 spike protein (rMeV-S) and tested its efficacy using mouse and hamster models. In hCD46Tg mice, two-dose rMeV-S vaccination induced higher Th1 secretion and humoral responses than one-dose vaccination. Interestingly, neutralizing antibodies induced by one-dose and two-dose rMeV-S immunization effectively blocked the entry of the α, ß, γ, and δ variants of SARS-CoV-2. Furthermore, two-dose rMeV-S immunization provided complete protection against SARS-CoV-2 in the hamster model. These results suggest the potential of rMeV-S as a vaccine candidate for targeting SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Animals , Mice , Antibodies, Neutralizing , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Measles virus/genetics , Antibodies, Viral , COVID-19/prevention & control , Measles Vaccine
3.
Front Microbiol ; 12: 732450, 2021.
Article in English | MEDLINE | ID: covidwho-1463487

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape vaccine-induced neutralizing antibodies has indicated the importance of T cell responses against this virus. In this study, we highlight the SARS-CoV-2 epitopes that induce potent T cell responses and discuss whether T cell responses alone are adequate to confer protection against SARS-CoV-2 and describe the administration of 20 peptides with an RNA adjuvant in mice. The peptides have been synthesized based on SARS-CoV-2 spike and nucleocapsid protein sequences. Our study demonstrates that immunization with these peptides significantly increases the proportion of effector memory T cell population and interferon-γ (IFN-γ)-, interleukin-4 (IL-4)-, tumor necrosis factor-α (TNF-α)-, and granzyme B-producing T cells. Of these 20 peptides, four induce the generation of IFN-γ-producing T cells, elicit CD8+ T cell (CTL) responses in a dose-dependent manner, and induce cytotoxic T lymphocytes that eliminate peptide-pulsed target cells in vivo. Although it is not statistically significant, these peptide vaccines reduce viral titers in infected hamsters and alleviate pulmonary pathology in SARS-CoV-2-infected human ACE2 transgenic mice. These findings may aid the design of effective SARS-CoV-2 peptide vaccines, while providing insights into the role of T cells in SARS-CoV-2 infection.

4.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: covidwho-1247308

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Tetanus Toxoid/immunology , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Female , Macaca fascicularis , Mice , Mice, Inbred BALB C , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/immunology , Protein Domains , Rats , Recombinant Fusion Proteins/genetics , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Tetanus Toxoid/genetics , Vero Cells
6.
Pharmaceutics ; 12(5)2020 May 10.
Article in English | MEDLINE | ID: covidwho-326674

ABSTRACT

The effectiveness of vaccines is enhanced by adding adjuvants. Furthermore, the selection of an inoculation route depends on the type of adjuvant used and is important for achieving optimum vaccine efficacy. We investigated the immunological differences between two types of vaccines-spike protein from the Middle East respiratory syndrome virus and inactivated influenza virus vaccine, in combination with a single-stranded RNA adjuvant-administered through various routes (intramuscular, intradermal, and intranasal) to BALB/c mice. Intramuscular immunization with the RNA adjuvant-formulated spike protein elicited the highest humoral immune response, characterized by IgG1 and neutralizing antibody production. Although intranasal immunization did not elicit a humoral response, it showed extensive T-cell activation through large-scale induction of interferon-γ- and interleukin-2-secreting cells, as well as CD4+ T-cell activation in mouse splenocytes. Moreover, only intranasal immunization induced IgA production. When immunized with the inactivated influenza vaccine, administration of the RNA adjuvant via all routes led to protection after viral challenge, regardless of the presence of a vaccine-specific antibody. Therefore, the inoculation route should depend on the type of immune response needed; i.e., the intramuscular route is suitable for eliciting a humoral immune response, whereas the intranasal route is useful for T-cell activation and IgA induction.

7.
Coronavirus SARS-CoV MERS-CoV SARS-CoV-2 Vaccine ; 2020(J Bacteriol Virol)
Article in J Bacteriol virol. 2020 Jun | Jun | ID: covidwho-678316

ABSTRACT

Coronaviruses (CoVs) are the largest positive-sense RNA viruses with a wide range of natural hosts. To date, seven types of coronaviruses (HCoV-NL63;Human coronavirus NL63, HCoV-229E;Human coronavirus 229E, HCoV-OC43;Human coronavirus OC43, HCoV-HKU1;Human coronavirus HKU1, SARS-CoV;Severe acute respiratory syndrome-related coronavirus, MERS-Co;Middle East respiratory syndrome coronavirus, and SARS-CoV-2;Severe acute respiratory syndrome-related coronavirus) are known to cause disease in humans, and three of the CoVs (SARS-CoV, MERS-CoV, and SARS-CoV-2) cause severe, occasionally fatal, respiratory infections in humans. In November 2002, the case of severe acute respiratory syndrome (SARS), a new respiratory illness caused by SARS-CoV, was first reported in Guangdong Province, China. For the next several months, the SARS outbreak resulted in more than 8,000 cases of infection and 800 deaths. In June 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia with 2,373 reported viral infections and 823 associated deaths until February 2019. The outbreak of the MERS-CoV pandemic also occurred in South Korea in May 2015. In late December 2019, another novel coronavirus called SARS-CoV-2, genetically linked to SARS-CoV, emerged in Wuhan, Hubei Province of China that has spread worldwide. Outbreaks of coronavirus-infections are occurring frequently in the 21st century;therefore, it seems very likely that another pandemic of coronavirus can emerge anytime in the future. In this review, we outlined the biological characteristics of coronaviruses and summarized the status of vaccine development against SARS-CoV-2, SARS-CoV, and MERS-CoV in preparation for the unpredictable emergence of coronavirus pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL